The SnRK1A protein kinase plays a key role in sugar signaling during germination and seedling growth of rice.
نویسندگان
چکیده
Sugars repress alpha-amylase expression in germinating embryos and cell cultures of rice (Oryza sativa) through a sugar response complex (SRC) in alpha-amylase gene promoters and its interacting transcription factor MYBS1. The Snf1 protein kinase is required for the derepression of glucose-repressible genes in yeast. In this study, we explored the role of the yeast Snf1 ortholog in rice, SnRK1, in sugar signaling and plant growth. Rice embryo transient expression assays indicated that SnRK1A and SnRK1B act upstream and relieve glucose repression of MYBS1 and alphaAmy3 SRC promoters. Both SnRK1s contain N-terminal kinase domains serving as activators and C-terminal regulatory domains as dominant negative regulators of SRC. The accumulation and activity of SnRK1A was regulated by sugars posttranscriptionally, and SnRK1A relieved glucose repression specifically through the TA box in SRC. A transgenic RNA interference approach indicated that SnRK1A is also necessary for the activation of MYBS1 and alphaAmy3 expression under glucose starvation. Two mutants of SnRK1s, snrk1a and snrk1b, were obtained, and the functions of both SnRK1s were further studied. Our studies demonstrated that SnRK1A is an important intermediate in the sugar signaling cascade, functioning upstream from the interaction between MYBS1 and alphaAmy3 SRC and playing a key role in regulating seed germination and seedling growth in rice.
منابع مشابه
SnRK1A-interacting negative regulators modulate the nutrient starvation signaling sensor SnRK1 in source-sink communication in cereal seedlings under abiotic stress.
In plants, source-sink communication plays a pivotal role in crop productivity, yet the underlying regulatory mechanisms are largely unknown. The SnRK1A protein kinase and transcription factor MYBS1 regulate the sugar starvation signaling pathway during seedling growth in cereals. Here, we identified plant-specific SnRK1A-interacting negative regulators (SKINs). SKINs antagonize the function of...
متن کاملThe SnRK1A Protein Kinase Plays a Key Role in Sugar Signaling during Germination and Seedling Growth of Rice W
Chung-An Lu,a,1 Chih-Cheng Lin,b,1 Kuo-Wei Lee,b Jyh-Long Chen,b Li-Fen Huang,b Shin-Lon Ho,c Hsin-Ju Liu,b Yue-Ie Hsing,d and Su-May Yub,2 a Department of Life Sciences, National Central University, Jhongli City, Taoyuan County 320, Taiwan, Republic of China b Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan, Republic of China c Department of Agronomy, National Cha-...
متن کاملInterference with oxidative phosphorylation enhances anoxic expression of rice α-amylase genes through abolishing sugar regulation
Rice has the unique ability to express alpha-amylase under anoxic conditions, a feature that is critical for successful anaerobic germination and growth. Previously, anaerobic conditions were shown to up-regulate the expression of Amy3 subfamily genes (Amy3B/C, 3D, and 3E) in rice embryos. These genes are known to be feedback regulated by the hydrolytic products of starchy endosperm such as the...
متن کاملGPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development
BACKGROUND AND AIMS GPT2, a glucose 6-phosphate/phosphate translocator, plays an important role in environmental sensing in mature leaves of Arabidopsis thaliana. Its expression has also been detected in arabidopsis seeds and seedlings. In order to examine the role of this protein early in development, germination and seedling growth were studied. METHODS Germination, greening and establishme...
متن کاملBiochemical Aspects of Protein Changes in Seed Physiology and Germination
Seed storage proteins are synthesized as sources of carbon, nitrogen and sulfur for the next generation of plants. Reactive oxygen species serve as second messengers for signal transduction; however, molecular targets of oxidant signaling have not been defined. Here, many researchers showes that ligand–receptor mediated signaling promotes reactive oxygen species– dependent protein carbonylation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 19 8 شماره
صفحات -
تاریخ انتشار 2007